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Abstract

The lattice Boltzmann method for two-phase fluid flows with large density ratios is applied to the simulations of the collision dynam-
ics of two unequal-size droplets with the diameter ratios of k ¼ 0:5 and 0.25 for various Weber numbers of 30 < We < 140 and impact
parameters of 0 6 B 6 0:75 at Reynolds numbers of 3900 6 Re 6 4900. The density ratio of the liquid to the gas is fixed at 50. Coales-
cence collision and two different types of separating collisions, namely reflexive and stretching separations, are simulated. The boundaries
between the coalescence collision and both of the separating collisions are found and compared with available theoretical predictions.
The mixing processes during separating collisions with k ¼ 0:5 for various Weber numbers are also simulated by tracing colored particles
embedded in the droplets, and the relation between the mixing rate and the Weber number is obtained.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The phenomena of binary droplet collision are of funda-
mental importance in the studies of raindrop formation,
spraying processes, dispersed phase systems, and so on.
Therefore, many investigations of the binary droplet colli-
sion dynamics have been performed by using experimental,
numerical, and theoretical approaches [1–5]. In particular,
numerical simulations are currently in progress to enhance
the physical understanding of fluid dynamics inside the
droplets which cannot be readily studied experimentally
[6–11].

Mashayek et al. [6] studied the axisymmetric coales-
cence of two liquid drops using a Galerkin finite element
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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method with the spline-flux scheme for tracking the free
surface. The effects of Reynolds number, impact velocity,
drop size ratio, and internal circulation on the coalescence
process were investigated. Inamuro et al. [15] proposed a
two-phase lattice Boltzmann method (two-phase LBM)
for large density ratios and investigated binary droplet col-
lisions with a density ratio of 50 for various Weber num-
bers and impact parameters [7]. In addition, the mixing
processes during separating collisions were simulated for
various impact parameters. Dai and Schmidt [8] investi-
gated the effect of viscosity on the maximum deformation
amplitude for a head-on collision of two equal-size drop-
lets using a moving-mesh finite-volume method. Pan and
Suga [9] studied the process of the collision of two liquid
droplets by solving the incompressible Navier–Stokes
equations coupled with the convective equation of the level
set function. Premnath and Abraham [10] used a multiple-
relaxation-time lattice Boltzmann method for simulating
binary droplet collisions with low density ratios and inves-
tigated the effects of the Weber number and the Ohnesorge
number on the characteristics of collisions. Meleán and Sig-
alotti [11] investigated the coalescence of two equal-sized
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Nomenclature

a free parameter determining /
b free parameter determining /
B impact parameter, 2X=ðDl þ DsÞ
c characteristic particle speed
ci particle velocity
Dl diameter of larger droplet
Ds diameter of smaller droplet
Ei constants in equilibrium distribution functions
F i constants in equilibrium distribution functions
fi particle velocity distribution function for an

order parameter
f eq

i equilibrium distribution function for fi

gi particle velocity distribution function for a mul-
ticomponent fluid

geq
i equilibrium distribution function for gi

hi particle velocity distribution function for pres-
sure

Hi constants in equilibrium distribution functions
L characteristic length
p pressure
p0 function determining /
Re Reynolds number, qLDlV =lL

Sh Strouhal number, U=c
t time
t0 characteristic time scale, L=U
t� characteristic time after release, 2tV =ðDl þ DsÞ
T free parameter determining /
u current velocity of a multicomponent fluid
u� predicted velocity of a multicomponent fluid
U characteristic flow speed
V relative velocity of binary collision

We Weber number, qLDsV 2=r
x Cartesian coordinates, ðx; y; zÞ
X distance from the center of one droplet to the

relative velocity vector on the center of the other
droplet

Greek symbols

dab Kronecher delta
Dx lattice spacing
Dt time step
jf constant parameter determining the width of

interface
jg constant parameter determining the strength of

surface tension
k diameter ratio, Ds=Dl

l viscosity
q density
q0 reference density
r surface tension
sf relaxation time for fi

sg relaxation time for gi
sh relaxation time for hi

/ order parameter representing an interface

Subscripts

G gas phase
L liquid phase
a Cartesian coordinates
b Cartesian coordinates
c Cartesian coordinates
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infinitely long cylinders using the method of smoothed par-
ticle hydrodynamics.

The above-mentioned researches by experimental,
numerical, and theoretical approaches were focused mainly
on the collisions of two equal-size droplets, and the collision
dynamics of two unequal-size droplets has been little under-
stood, although it is very important for practical problems.
In particular, the collision of two unequal-size droplets with
the diameter ratio less than 0.5 has not been investigated so
much. Experimental data for the diameter ratio less than 0.5
are little, and also the theoretical predictions of reflexive
and stretching separations by Ashgriz and Poo [2] and by
Brazier-Smith et al. [16] become unclear as the diameter
ratio is small.

The aim of the present paper is to apply the two-phase
LBM [7,15,17] to simulations of the collision dynamics of
two unequal-size droplets for various Weber numbers
and impact parameters. The calculated results are classified
into coalescence collision and two different types of sepa-
rating collisions, namely reflexive and stretching separa-
tions, and the boundaries of three types of collisions are
compared with available theoretical predictions. The mix-
ing processes during separating collisions for various
Weber numbers are also simulated by tracing colored par-
ticles embedded in the droplets.
2. Numerical method

Non-dimensional variables, which are defined by using a
characteristic length L, a characteristic particle speed c, a
characteristic time scale t0 ¼ L=U , where U is a character-
istic flow speed, and a reference density q0, are used as in
[13]. In the LBM, a modeled fluid, composed of identical
particles whose velocities are restricted to a finite set of N

vectors ci ði ¼ 1; 2; . . . ;NÞ, is considered. The 15-velocity
model ðN ¼ 15Þ is used in the present paper. The velocity
vectors of this model are given by



½c1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12; c13; c14; c15� ¼
0 1 0 0 �1 0 0 1 �1 1 1 �1 1 �1 �1
0 0 1 0 0 �1 0 1 1 �1 1 �1 �1 1 �1
0 0 0 1 0 0 �1 1 1 1 �1 �1 �1 �1 1

2
4

3
5:
ð1Þ
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The physical space is divided into a cubic lattice, and the
evolution of particle population at each lattice site is com-
puted. Two particle velocity distribution functions, fi and
gi, are used. The function fi is used for the calculation of
an order parameter which represents the difference between
two phases, and the function gi is used for the calculation
of a predicted velocity of the two-phase fluid without a
pressure gradient. The evolution of the particle distribution
functions fiðx; tÞ and giðx; tÞ with velocity ci at the point x
and at time t is computed by the following equations:

fiðxþ ciDx; t þ DtÞ

¼ fiðx; tÞ �
1

sf
fiðx; tÞ � f eq

i ðx; tÞ½ �; ð2Þ

giðxþ ciDx; t þ DtÞ

¼ giðx; tÞ �
1

sg
giðx; tÞ � geq

i ðx; tÞ½ �

þ 3Eicia
1

q
o

oxb
l

oub

oxa
þ oua

oxb

� �� �
Dx; ð3Þ

where f eq
i and geq

i are equilibrium distribution functions, sf

and sg are dimensionless single relaxation times, Dx is a
spacing of the cubic lattice, Dt is a time step during which
the particles travel the lattice spacing, and the other vari-
ables, q, l and u, and constants Ei are defined below.

The order parameter / representing the difference
between two phases and the predicted velocity u� of the
two-phase fluid are defined in terms of the two particle
velocity distribution functions as follows:

/ ¼
X15

i¼1

fi; ð4Þ

u� ¼
X15

i¼1

cigi: ð5Þ

The equilibrium distribution functions in Eqs. (2) and (3)
are given by

f eq
i ¼ Hi/þ F i p0 � jf /

o2/
ox2

a

� jf

6

o/
oxa

� �2
" #

þ 3Ei/ciaua þ Eijf Gabð/Þciacib; ð6Þ

geq
i ¼ Ei 1þ 3ciaua �

3

2
uaua þ

9

2
ciacibuaub

�

þ 3

2
sg �

1

2

� �
Dx

oub

oxa
þ oua

oxb

� �
ciacib

�

þ Ei
jg

q
GabðqÞciacib �

2

3
F i

jg

q
oq
oxa

� �2

; ð7Þ
where

E1 ¼ 2=9; E2 ¼ E3 ¼ E4 ¼ � � � ¼ E7 ¼ 1=9;

E8 ¼ E9 ¼ E10 ¼ � � � ¼ E15 ¼ 1=72;

H 1 ¼ 1; H 2 ¼ H 3 ¼ H 4 ¼ � � � ¼ H 15 ¼ 0;

F 1 ¼ �7=3; F i ¼ 3Ei ði ¼ 2; 3; 4; . . . ; 15Þ;

ð8Þ

and

Gabð/Þ ¼
9

2

o/
oxa

o/
oxb
� 3

2

o/
oxc

o/
oxc

dab; ð9Þ

with a; b; c ¼ x; y; z (subscripts a; b, and c represent Carte-
sian coordinates and the summation convention is used).
In the above equations, dab is the Kronecker delta, jf is a
constant parameter determining the width of the interface,
and jg is a constant parameter determining the strength of
the surface tension. In Eq. (6), p0 is given by

p0 ¼ /T
1

1� b/
� a/2; ð10Þ

where a; b, and T are free parameters determining the max-
imum and minimum values of the order parameter /. It is
noted that f eq

i is the same as that of the Swift et al. model
[12]. The following finite-difference approximations are
used to calculate the derivatives in Eqs. (6), (7), and (9):

ow
oxa
� 1

10Dx

X15

i¼2

ciawðxþ ciDxÞ; ð11Þ

r2w � 1

5ðDxÞ2
X15

i¼2

wðxþ ciDxÞ � 14wðxÞ
" #

: ð12Þ

The density in the interface is obtained by using the cut-off
values of the order parameter, /�L and /�G, for the liquid
and gas phases with the following relation:

q ¼

qG; / < /�G;

Dq
2

sin /�/�

D/� p
� �

þ 1
h i

þ qG; /�G 6 / 6 /�L;

qL; / > /�L;

8>><
>>: ð13Þ

where qG and qL are the density of gas and liquid phase,
respectively, Dq ¼ qL � qG, D/� ¼ /�L � /�G, and
/� ¼ ð/�L þ /�GÞ=2. The viscosity l in the interface is ob-
tained by

l ¼ q� qG

qL � qG

ðlL � lGÞ þ lG; ð14Þ

where lG and lL are the viscosity of gas and liquid phase,
respectively.
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The surface tension r is given by

r ¼ jg

Z 1

�1

oq
on

� �2

dn; ð15Þ

with n being the coordinate normal to the interface [14].
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Fig. 1. Computational domain and two unequal-size droplets.

Fig. 2. Time evolution of droplet shape for k ¼ 0:5, We ¼ 30:8, and
B ¼ 0:25 ½t� ¼ 2tV =ðDl þ DsÞ�.
Since u� is not divergence free ðr � u� 6¼ 0Þ, the correc-
tion of u� is required. The current velocity u which satisfies
the continuity equation ðr � u ¼ 0Þ can be obtained by
using the following equations:

Sh
u� u�

Dt
¼ �rp

q
; ð16Þ

r � rp
q

� �
¼ Sh

r � u�
Dt

; ð17Þ

where Sh ¼ U=c is the Strouhal number and p is the pres-
sure. The Poisson equation (17) can be solved by various
methods. In the present paper, we solve Eq. (17) in the
framework of LBM. Namely, the following evolution
equation of the velocity distribution function hi is used
for the calculation of the pressure p:
Fig. 3. Time evolution of droplet shape for k ¼ 0:5, We ¼ 51:3, and
B ¼ 0 ½t� ¼ 2tV =ðDl þ DsÞ�.



B. Sakakibara, T. Inamuro / International Journal of Heat and Mass Transfer 51 (2008) 3207–3216 3211
hnþ1
i ðxþ ciDxÞ ¼ hn

i ðxÞ �
1

sh
hn

i ðxÞ � EipnðxÞ
� 	

� 1

3
Ei

ou�a
oxa

Dx; ð18Þ

where n is the number of iterations and the relaxation time
sh is given by

sh ¼
1

q
þ 1

2
: ð19Þ

The pressure is obtained by

p ¼
X15

i¼1

hi: ð20Þ

The iteration of Eq. (18) is repeated until j pnþ1 � pn j =q <
10�5 is satisfied in the whole domain.
Fig. 4. Time evolution of velocity vectors and density contours at
y ¼ Ly=2 for k ¼ 0:5, We ¼ 51:3 and B ¼ 0 ½t� ¼ 2tV =ðDl þ DsÞ�.
Applying the asymptotic theory [18] to Eqs. (2), (3) and
(18), we find that the asymptotic expansions of macro-
scopic variables, /; q; u, and p, satisfy the phase-field
advection–diffusion equation (the Cahn–Hilliard equation
with advection) for /, the continuity equation, and the
Navier–Stokes equations for incompressible two-phase
fluid with relative errors of O½ðDxÞ2� [15].

In preliminary calculations, it is found that using the
present method we can simulate two-phase flows with the
density ratio up to 1000, but the iteration of Eq. (18) needs
more computation time as the increase of the density ratio.
In the following calculations, therefore, we use the same
density ratio of qL=qG ¼ 50 as the previous paper [7] which
is nearly the ratio of injected fuel to compressed oxidizer in
diesel engines.
Fig. 5. Time evolution of droplet shape for k ¼ 0:5, We ¼ 61:5, and
B ¼ 0:6 ½t� ¼ 2tV =ðDl þ DsÞ�.
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3. Results and discussion

Two liquid droplets with the diameters Dl and Ds are
placed in a gas phase, and they collide with the relative
velocity V as shown in Fig. 1. Each droplet has the velocity
V =2 in opposite directions with the distance X which is
measured from the center of one droplet to the relative
velocity vector placed on the center of the other droplet
(see Fig. 1). The density ratio of the liquid to the gas is
qL=qG ¼ 50 ðqL ¼ 50; q G ¼ 1Þ. The viscosities of the drop-
let and the gas are l L ¼ 8:0� 10�2Dx and lG ¼ 1:6� 10�3

Dx, respectively. The dimensionless parameters for binary
droplet collisions are the diameter ratio k ¼ Ds=Dl, the
Weber number We ¼ qLDsV 2=r, the Reynolds number
Re ¼ qLDlV =lL, and the impact parameter B ¼ 2X=ðDlþ
DsÞ. The periodic boundary condition is used on all the
sides of the domain. The half of the domain is calculated
using the symmetry with y ¼ Ly=2. The half domain is
divided into a 640 � 80 � 160 cubic lattice. The parameters
in Eq. (9) are a ¼ 1; b ¼ 6:7, and T ¼ 3:5� 10�2; it follows
that the maximum and minimum values of the order
parameter are / max ¼ 9:714� 10�2 and /min ¼ 1:134�
10�2. The cut-off values of the order parameter are
/�L ¼ 9:2� 10�2 and /�G ¼ 1:5� 10�2. The other parame-
ters are fixed at jf ¼ 0:5ðDxÞ2; jg ¼ 3:0� 10�4ðDxÞ2; sf ¼
1, and sg ¼ 1. The relative velocity V is changed in the
range of 30 < We < 140 and 3000 6 Re 6 4900. In the fol-
lowing, two cases with the diameter ratios k ¼ 0:5 ðDl ¼
80Dx;Ds ¼ 40DxÞ and k ¼ 0:25 ðDl ¼ 80Dx;Ds ¼ 20DxÞ
are calculated.
3.1. Results for diameter ratio k = 0.5

Fig. 2 shows the calculated results of time evolution of
droplet shape for We ¼ 30:8 and B ¼ 0:25. The condition
corresponds to V = 0.85 m/s, Dl ¼ 6:4 mm and Ds ¼ 3:2
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Fig. 6. Calculated results classified into three types of collisions for
k ¼ 0:5. The solid curves represent the theoretical prediction of the
boundaries between the three types of collisions by Ashgriz and Poo [2],
and the broken curve represent the theoretical prediction of the boundary
between the coalescence collision and the stretching separation collision by
Brazier-Smith et al. [16].
mm in the collision of water droplets at 20 �C. The droplet
shape represents the surface of q ¼ ðqL þ qGÞ=2. After two
droplets collide, they are formed into a disk-like droplet
and then the coalescing droplet oscillates with forming var-
ious pear-shapes. The droplet never breaks in this case.
This type of collision is called ‘‘coalescence collision”.
Fig. 3 shows the calculated results for We ¼ 51:3 and
B ¼ 0. The time evolution of droplet shape is similar to
the previous case up to t� ¼ 6:33. In this case, however,
the droplet is formed into a long cylinder with rounded
ends, and finally the cylinder breaks into two droplets. This
type of collision is called ‘‘reflexive separation collision”.
The fluid velocity fields at y ¼ Ly=2 are shown in Fig. 4.
The complicated gas flows outside the droplets as well as
liquid flows inside the droplets are clearly found. Fig. 5
Fig. 7. Time evolution of tracer particles for k ¼ 0:5, We ¼ 78:8, and
B ¼ 0:19 ½t� ¼ 2tV =ðDl þ DsÞ�. The particles in y P Ly=2 are viewed from
y ¼ �1.
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shows the calculated results for We ¼ 61:5 and B ¼ 0:6.
Since the two droplets collide at the high impact parameter,
only a portion of them contacts directly, and the remaining
portions of the droplets tend to move in the direction of
their initial velocities and consequently stretch the region
of the interaction. Finally, the droplet breaks into two
droplets. This type of collision is called ‘‘stretching separa-
tion collision”.

We calculated for various Weber numbers and impact
parameters, and classified the results into the above-men-
tioned three types of collision in the We–B plane as shown
in Fig. 6. It is seen that the reflexive separation collisions
appear in the region of low impact parameters and high
Weber numbers over a critical value, and the stretching
separation collisions occur at high impact parameters.
The coalescence collisions occur between the two regions.
In the figure, the theoretical predictions of the boundaries
of the three types of collisions by using a simple energy bal-
ance analysis of Ashgriz and Poo [2] and Brazier-Smith
et al. [16] are also drawn. The present calculated results
are in good agreement with the theoretical prediction by
Brazier-Smith et al. for the boundary between the coales-
cence and the stretching separation, although the boundary
between the reflexive separation and the coalescence of the
present results is shifted a little to the larger B from the the-
oretical prediction by Ashgriz and Poo.
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Fig. 8. Mixing rate versus We for k ¼ 0:5 and B ¼ 0; (a) smaller droplet,
(b) larger droplet.
The study of the mixing process during collisions is an
important issue. By tracing fluid particles in two droplets,
we investigate the mixing of fluids in two colliding droplets.
The locations of the fluid particles at every time step are
calculated by using the fourth-order Runge–Kutta method.
Note that the particles going out of the droplets due to
numerical errors are omitted in the calculation. Fig. 7
shows the calculated results for We ¼ 82:1 and B ¼ 0. In
the figure the particles in y P Ly=2 are viewed from
y ¼ �1. Initially about 5300 white and 42,000 black par-
ticles are embedded in the small and the large droplets,
respectively. After two droplets collide, the white particles
penetrate to the black particles at t� ¼ 2:45 and 4.08, but
after that the white particles move outside the black parti-
cles at t� ¼ 8:98 and 12.0. Finally, the droplet breaks into
Fig. 9. Time evolution of droplet shape for k ¼ 0:25, We ¼ 89:6, and
B ¼ 0 ½t� ¼ 2tV =ðDl þ DsÞ�.
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two partially mixed droplets. The mixing rate, which is
defined here by the percentage of the number of the white
particles in the total number of particles in the separated
droplet, can be calculated by counting the number of the
white and black particles in the separated droplet. At
t� ¼ 21:9 in Fig. 7, the mixing rates obtained are 1.9% for
the larger droplet and 40.4% for the smaller droplet. We
calculated the mixing rate for various Weber numbers
We at B ¼ 0, and the results are shown in Fig. 8. It is seen
from Fig. 8 that as the Weber number increases, the mixing
rate for the smaller droplet increases, while the mixing rate
for the larger droplet decreases. That is, after the collision a
larger portion of the small droplet moves to the other side
through the outside of the large droplet, as the Weber num-
ber increases.
Fig. 10. Time evolution of droplet shape for k ¼ 0:25, We ¼ 89:6, and
B ¼ 0:5 ½t� ¼ 2tV =ðDl þ DsÞ�.
3.2. Results for diameter ratio k = 0.25

Next, the results for k = 0.25 are shown. Fig. 9 shows
the calculated results of time evolution of droplet shape
for k ¼ 0:25, We ¼ 89:6 and B ¼ 0. The condition corre-
sponds to V ¼ 5:3 m=s; Dl ¼ 0:94 mm and Ds ¼ 0:23 mm
in the collision of water droplets at 20 �C. After two drop-
lets collide, a hollow surface is formed in the coalescing
droplet, and then the hollow repelled by the surface tension
with forming into a long cylinder with two necks and
rounded ends. Finally, the droplet breaks into two droplets
at the front neck. In addition, we found that the coalescing
droplet breaks into two droplets at the middle neck for
We ¼ 99:6 and it breaks into three droplets at the two necks
for We ¼ 120. These are all called ‘‘reflexive separation col-
Fig. 11. Time evolution of droplet shape for k ¼ 0:25, We ¼ 89:6, and
B ¼ 0:8 ½t� ¼ 2tV =ðDl þ DsÞ�.
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lision”, but hereafter we call the first case as RS1, the sec-
ond case as RS2, and the third case as RS3. Next, Fig. 10
shows the calculated results of time evolution of droplet
shape for k ¼ 0:25, We ¼ 89:6 and B ¼ 0:5. It is seen that
the coalescing droplet is formed into complicated shapes,
but it never breaks. The type of this collision is ‘‘coales-
cence collision”. Fig. 11 shows the calculated results of time
evolution of droplet shape for k ¼ 0:25;We ¼ 89:6 and
B ¼ 0:8. This is clearly ‘‘stretching separation collision”.
It is noted that during the collision the larger droplet is
formed into complicated shape, although the smaller drop-
let is little deformed. We calculated for various Weber
numbers and impact parameters, and classified the calcu-
lated results into the three types of collision in the We–B
plane as shown in Fig. 12. In this case, the theoretical pre-
dictions of the boundaries of the three types of collisions by
Ashgriz and Poo [2] and Brazier-Smith et al. [16] do not
work so well. It is found from Fig. 12 that the reflexive sep-
aration collisions occur in the wide range of We > 90 and
0 6 B < 0:6 where the theoretical predictions fail.
4. Concluding remarks

We have applied the lattice Boltzmann method for two-
phase fluid flows with large density ratios to the simulations
of collision dynamics of two unequal-size droplets for vari-
ous Weber numbers and impact parameters. The calculated
results are classified into three types of collisions, namely
coalescence, reflexive separation, and stretching separation
collisions, and are compared with the theoretical predictions.
It is noted that the boundaries of the three types of collisions
are obtained from the present results with the diameter ratios
of k ¼ 0:25 where the theoretical predictions fail.

Also, we have investigated the feature of mixing pro-
cesses during separating collisions by tracing colored parti-
cles embedded in the droplets. It is found from the results
with the diameter ratios of k ¼ 0:5 that as the Weber num-
ber increases, the mixing rate for the smaller droplet
increases, while the mixing rate for the larger droplet
decreases.

In this paper, we do not deal with other types of binary
droplet collisions such as a bouncing collision for low
Weber numbers and a shattering collision for high Weber
numbers. We are currently trying to simulate these types
of collisions by the present method. In addition, the simu-
lation for higher density ratios (e.g., 1000) is of importance
in future work.
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